## OTA Technical Conference

September 4, 2014

## Engineering Aerial Facilities

## Presented By:

Larry Fausett P.E. and V. P.
Finley Engineering Company, Inc.
Oklahoma Telephone Association

## Finley Involvement

- Broadband / Telecom Division
- 25,358 miles
- 122,417 subscribers
- 7,186 miles of transport projects between 96 metropolitan areas
- Energy Division
- J oint Use Group
- Our Value Proposition
- Evaluate up front \& avoid expensive application fees


## Types of Aerial Fiber

## - OPGW



## Types of Aerial Fiber

- All Dielectric Self Support (ADSS Fiber)




## Types of Aerial Fiber

## All-Dielectric Self-Supporting (AFL-ADSS®) Fiber Optic Cable

| NESC HEAVY LOADING @ 1\% INSTALLATION SAG |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SPAN |  | WEIGHT |  | DIAMETER |  | MRCL |  | INITIAL TENSION |  |  |  |  |
|  |  | UNLOADED | LOADED |  |  |  |  |
| FEET | METERS |  |  | LBS/FT | KG/KM | INCHES | MM | LBS | N | LBS | N | SAG \% | LBS | N |
| 48 FIBERS |  |  |  |  |  |  |  |  |  |  |  |  |
| 100 | 30 | 0.083 | 124 |  |  | 0.500 | 12.7 | 539 | 2398 | 104 | 463 | 3.5 | 338 | 1503 |
| 200 | 61 | 0.083 | 124 | 0.500 | 12.7 | 598 | 2661 | 209 | 930 | 4.1 | 574 | 2553 |
| 300 | 91 | 0.083 | 124 | 0.500 | 12.7 | 936 | 4162 | 313 | 1392 | 4.1 | 870 | 3870 |
| 400 | 122 | 0.087 | 130 | 0.512 | 13.0 | 1189 | 5290 | 437 | 1944 | 4.1 | 1160 | 5160 |
| 500 | 152 | 0.088 | 130 | 0.512 | 13.0 | 1506 | 6699 | 547 | 2433 | 4.1 | 1456 | 6477 |
| 600 | 183 | 0.088 | 131 | 0.512 | 13.0 | 1823 | 8108 | 658 | 2927 | 4.1 | 1752 | 7793 |
| 700 | 213 | 0.093 | 139 | 0.528 | 13.4 | 2076 | 9236 | 815 | 3625 | 4.1 | 2067 | 9194 |
| 800 | 244 | 0.093 | 139 | 0.528 | 13.4 | 2456 | 10927 | 932 | 4146 | 4.1 | 2384 | 10605 |
| 900 | 274 | 0.093 | 139 | 0.528 | 13.4 | 2710 | 12054 | 1049 | 4666 | 4.1 | 2668 | 11868 |
| 1000 | 305 | 0.093 | 139 | 0.528 | 13.4 | 3090 | 13745 | 1167 | 5191 | 4.1 | 2986 | 13282 |
| 1100 | 335 | 0.096 | 143 | 0.535 | 13.6 | 3470 | 15436 | 1322 | 5881 | 4.1 | 3332 | 14821 |
| 1200 | 366 | 0.096 | 143 | 0.535 | 13.6 | 3724 | 16564 | 1443 | 6419 | 4.1 | 3620 | 16103 |
| 1300 | 396 | 0.105 | 156 | 0.559 | 14.2 | 4104 | 18255 | 1704 | 7580 | 4.1 | 4045 | 17993 |
| 1400 | 427 | 0.105 | 156 | 0.559 | 14.2 | 4435 | 19729 | 1839 | 8180 | 4.1 | 4363 | 19408 |
| 1500 | 457 | 0.105 | 157 | 0.559 | 14.2 | 4689 | 20857 | 1974 | 8781 | 4.1 | 4660 | 20729 |

http://www. aflglobal .com/Products/Fiber-Optic-Cable/ADSS/Standard-Design-Cable/Standard_ADSs_Fiber_Optic_Cable.aspx

## Types of Aerial Fiber

- Strand and Lash


Finley


## New Pole Selection

- Grade C construction, defined in NESC, is sufficient for most aerial plant construction
- Grade B construction should be used for crossings of railroads, limited-access highways, and other special situations
- Pole Length should be determined by ground clearances, sags, etc.
- Pole Class should be determined by the pole's strength and transverse load requirements
- We typically use Class 1, 3, and 5 poles
- Class 5 for straight line, Class 3 for corners, Class 1 for bad corners or deadends


## Strand

## Per RUS:

$$
\begin{gathered}
\text { Utilities grade, steel, seven wire } \\
5 / 16^{\prime \prime}(6 \mathrm{M}) \quad 3 / 8^{\prime \prime}(10 \mathrm{M}) \quad 7 / 16^{\prime \prime}(16 \mathrm{M})
\end{gathered}
$$

## Extra High Strength grade, steel, seven wire 1/ 4"(6M) 5/ 16"(10M) 7/ 16"(16M)

See Bakaert Strand chart for example of weights and breaking strength.

## Strand Hardware

- Lashing Wire Termination
- Strand Connections
- Pole Attachments


No. 7903

No. 7903L


## Anchors

- Expanding
- Rock
- Screw
- Swamp



## Guying and Anchoring

- Size of guy for lashed aerial plant should be based on tension in the suspension strand when the cable and strand are loaded to $60 \%$ of the rated breaking strength of the strand
- Lead to Height ratios
- Angles measured in feet of pull



## Guying and Anchoring

- Guy Rule determines size of guy required based on lead, height, and pull measurements
- Assume 50 feet of pull for deadends
- Use smaller equivalent guys for Iarger guy sizes
- Ex. For 26M guy size, use 1 10M guy and 1 16M guy
- Size of anchor is determined by guying requirements

INTEGRITY INTO EVERYTHING


## Guying Tips

- Guys placed at corner angles of 60 degrees or less should be installed at the bisect of angle, unless double-deadend is required for other reasons.
- Two head guys (double-deadend) required at corners greater than 60 but less than 90 degrees.



## Grounding

- Ground minimum 4 times per mile
- PM2/ PM2A on one pole when crossing under any power lines
- If on telephone pole line and attach to one power pole, must ground to MGN
- We typically ground poles on each side of the power pole as well
- At end of the line poles

INTEGRITY INTO EVERYTHING

## NESC Code Terminology

- Communication Lines
- Located in Communications Space
- CATV
- Traditional Copper Telephone Cables
- Located in the Supply Space
- "Qualified" work force required
- Minimum approach distances
- Dependent upon facility owner approval


## NESC Pole Separations

- Table 235-5
" 40" vertical clearance supply equipment and communication equipment (up to 8.7 kV )
- If supply voltage is greater than 8.7 kV , clearance increases by 0.4 " per KV over 8.7
- Less than 40" (e.g. 30") may be acceptable for certain grounded supply facilities


## Pole Separation



Fig. 238-6. Example of vertical clearance between supply and communication equipment on the same structure (Rule 238B).

## Pole Separation

Rule 239J


Fig. 238-15. Exception to vertical clearance between a drip loop feeding roadway lighting
and communication equipment (Rules 238C and 238D). and communication equipment (Rules 238C and 238D).
$\underset{\substack{\text { Sen } \\ \text { Shoto(s) }}}{\text { Pen }}$

## Pole Separation


-120/240V, 1Ø, 3W secondary (230C3)

VIOLATION!
A clearance of 40 " is required. The 12" vertical clearance to a drip loop only applies to a drip loop entering a luminaire or traffic signal bracket. Luminaires and traffic signals serve their own safety function and therefore merit special code consideration.

Fig. 238-16. Example of a common joint use violation (Rule 238D).

## Mid-Span Separation

Rule 235E


Fig. 235-12. Example of vertical clearance between joint use (supply and communication) conductors (Rule 235C).

Finley ENGINEERING

[^0]
## Mainline Power Violations



## Separation to Power Conduit



Fig. 239-7. Example of vertical supply conductors on a joint use pole (Rule 239G1).

## Violation to Power Conduit



Finces

## Vertical Ground Clearances

- Table 232-1
- Roads, streets, alleys, \& other areas subject to traffic: 15.5 feet
- Railroads: 23.5 feet
- 230.A.2.a clarification on 9.5 feet
"spaces and ways subject to pedestrians or restricted traffic only are those areas where riders on horseback or other large animals, vehicles, or other mobile units exceeding (8 ft.) in height are prohibited by regulation or permanent terrain configurations or are other wise neither normally encountered nor reasonably anticipated or are otherwise limited."
- Minimum clearance under fully loaded conditions.


## Aerial Pole Line Review

ADSS Fiber

## Spans

$\underline{400^{\prime}} \quad 350^{\prime} \quad 300^{\prime} \quad \underline{250^{\prime}} \quad 200^{\prime}$

Fiber

| - 24 | $16.4^{\prime}$ | - | $12.3^{\prime}$ | - | $8.2^{\prime}$ |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| - 96 | $15.6^{\prime}$ | - | $11.1^{\prime}$ | - | $6.6^{\prime}$ | Projected Sag |
| - 288 | $13.6^{\prime}$ | - | $10.2^{\prime}$ | - | $6.6^{\prime}$ | (In Feet) |

NESC Heavy Loading @ 1\%Installation Sag (Per AFL Manuf.)

## Aerial Pole Line Review

Strand and Lash

Spans
$\underline{400^{\prime}} \quad 350^{\prime} \quad 300^{\prime} \quad \underline{250^{\prime}} \quad 200^{\prime}$
Fiber

- 24
7.4'

6. $0^{\prime}$
4.7'
3.5'

- 

Sag 10

- 96 7.7' 6.3' $4.9^{\prime} \quad 3.6^{\prime} \quad$ - $\quad$ Projected Sag
- 288
8.4'

6. $8^{\prime}$
5.4' 4.0'
(In Feet)

3/ 8"; Steel; High Strength; .5" Ice; @32 Deg

## Aerial Service Drops

- NEC 840 - Premises Powered Broadband Communication Systems
- NEC 840.44 - Overhead Optical Fiber Cables
- Where practicable, outside plant optical fiber cables shall be located below electric light or power conductors
- Maintain 40" separation at pole
- Maintain 12" separation in-span and at house

INTEGRITY INTO EVERYTHING

## Aerial Service Drops

- NEC 840.44 (B) - Vertical clearance of not less than 8' from all points of roofs above which cables pass
- Exception 1: Does not apply to auxiliary buildings such as garages and the like
- Exception 2: Reduction in clearance above only the overhanging portion of the roof to not less than 18" shall be permitted if (a) not more than 4' of drop cable passes above roof overhang and (b) the cable is terminated at a through- or above-the-roof raceway or approved support

INTEGRITY INTO EVERYTHING

## Aerial Service Drops

- NEC 230.28 - Service Masts as Supports
- Only power service drop conductors shall be permitted to be attached to service mast
- Communication conductors such as those for cable TV or telephone service are not permitted to be attached to the service mast


## Service Drop Power Violation



Finicus

## Service Drop Power Violation



Fincey
INTEGRITY INTO EVERYTHING

## Service Drop Power Violation



## Finに

## Go or No Go


$=\| \prod_{\text {ENGINEERING }}^{\infty}$
INTEGRITY INTO EVERYTHING
fecinc.com

## Go or No Go



## Right-of-Way Considerations

- Easement Acquisition
- Do the ownership research
- Prepare the easement document
- Sign and notarize
- Have a checkbook in hand
- Record at courthouse
- IRS paperwork may be required
- \$600.00



## Right-of-Way Considerations



Finley

## Thank you

## Questions?

Please hold till the end

- Contact Info:

Larry Fausett
I. fausett@fecinc.com

417-682-5531 office
417-262-0526 cell


[^0]:    INTEGRITY INTO EVERYTHING

