Engineering Aerial Facilities

Presented By:
Larry Fausett P.E. and V.P.
Finley Engineering Company, Inc.
Finley Involvement

- **Broadband / Telecom Division**
 - 25,358 miles
 - 122,417 subscribers
 - 7,186 miles of transport projects between 96 metropolitan areas

- **Energy Division**
 - Joint Use Group

- **Our Value Proposition**
 - Evaluate up front & avoid expensive application fees
Types of Aerial Fiber

- OPGW
Types of Aerial Fiber

- All Dielectric Self Support (ADSS Fiber)
Types of Aerial Fiber

All-Dielectric Self-Supporting (AFL-ADSS®) Fiber Optic Cable

NESC Heavy Loading @ 1% Installation Sag

<table>
<thead>
<tr>
<th>SPAN (FEET)</th>
<th>WEIGHT (LBS/FT)</th>
<th>DIAMETER (INCHES)</th>
<th>MRCL (LBS)</th>
<th>UNLOADED LBS</th>
<th>INITIAL TENSION (N)</th>
<th>LOADED LBS</th>
<th>LOADED N</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0.083</td>
<td>124</td>
<td>0.500</td>
<td>539</td>
<td>104</td>
<td>463</td>
<td>3.5</td>
</tr>
<tr>
<td>200</td>
<td>0.083</td>
<td>124</td>
<td>0.500</td>
<td>598</td>
<td>209</td>
<td>930</td>
<td>4.1</td>
</tr>
<tr>
<td>300</td>
<td>0.083</td>
<td>124</td>
<td>0.500</td>
<td>936</td>
<td>313</td>
<td>1392</td>
<td>4.1</td>
</tr>
<tr>
<td>400</td>
<td>0.087</td>
<td>130</td>
<td>0.512</td>
<td>1189</td>
<td>437</td>
<td>1944</td>
<td>4.1</td>
</tr>
<tr>
<td>500</td>
<td>0.088</td>
<td>130</td>
<td>0.512</td>
<td>1506</td>
<td>547</td>
<td>2433</td>
<td>4.1</td>
</tr>
<tr>
<td>600</td>
<td>0.088</td>
<td>131</td>
<td>0.512</td>
<td>1823</td>
<td>658</td>
<td>2927</td>
<td>4.1</td>
</tr>
<tr>
<td>700</td>
<td>0.093</td>
<td>139</td>
<td>0.528</td>
<td>2076</td>
<td>815</td>
<td>3625</td>
<td>4.1</td>
</tr>
<tr>
<td>800</td>
<td>0.093</td>
<td>139</td>
<td>0.528</td>
<td>2456</td>
<td>932</td>
<td>4146</td>
<td>4.1</td>
</tr>
<tr>
<td>900</td>
<td>0.093</td>
<td>139</td>
<td>0.528</td>
<td>2710</td>
<td>1049</td>
<td>4666</td>
<td>4.1</td>
</tr>
<tr>
<td>1000</td>
<td>0.093</td>
<td>139</td>
<td>0.528</td>
<td>3090</td>
<td>1167</td>
<td>5191</td>
<td>4.1</td>
</tr>
<tr>
<td>1100</td>
<td>0.096</td>
<td>143</td>
<td>0.535</td>
<td>3470</td>
<td>1322</td>
<td>5881</td>
<td>4.1</td>
</tr>
<tr>
<td>1200</td>
<td>0.096</td>
<td>143</td>
<td>0.535</td>
<td>3724</td>
<td>1443</td>
<td>6419</td>
<td>4.1</td>
</tr>
<tr>
<td>1300</td>
<td>0.105</td>
<td>156</td>
<td>0.559</td>
<td>4104</td>
<td>1704</td>
<td>7580</td>
<td>4.1</td>
</tr>
<tr>
<td>1400</td>
<td>0.105</td>
<td>157</td>
<td>0.559</td>
<td>4435</td>
<td>1839</td>
<td>8180</td>
<td>4.1</td>
</tr>
<tr>
<td>1500</td>
<td>0.105</td>
<td>157</td>
<td>0.559</td>
<td>4689</td>
<td>1974</td>
<td>8781</td>
<td>4.1</td>
</tr>
</tbody>
</table>

Learn more about all-dielectric self-supporting fiber optic cable and its applications at [AFL Global](http://www.aflglobal.com/Products/Fiber-Optic-Cable/ADSS/Standard-Design-Cable/Standard_ADSS_Fiber_Optic_Cable.aspx).

FINLEY ENGINEERING

INTEGRITY INTO EVERYTHING

AFL

fecinc.com
Types of Aerial Fiber

- Strand and Lash
New Pole Selection

- Grade C construction, defined in NESC, is sufficient for most aerial plant construction
- Grade B construction should be used for crossings of railroads, limited-access highways, and other special situations
- Pole Length should be determined by ground clearances, sags, etc.
- Pole Class should be determined by the pole’s strength and transverse load requirements
- We typically use Class 1, 3, and 5 poles
 - Class 5 for straight line, Class 3 for corners, Class 1 for bad corners or deadends
Per RUS:

Utilities grade, steel, seven wire
5/16” (6M) 3/8” (10M) 7/16” (16M)

Extra High Strength grade, steel, seven wire
1/4” (6M) 5/16” (10M) 7/16” (16M)

See Bakaert Strand chart for example of weights and breaking strength.
Strand Hardware

- Lashing Wire Termination
- Strand Connections
- Pole Attachments
Anchors

- Expanding
- Rock
- Screw
- Swamp
Guying and Anchoring

- Size of guy for lashed aerial plant should be based on tension in the suspension strand when the cable and strand are loaded to 60% of the rated breaking strength of the strand.
- Lead to Height ratios
- Angles measured in feet of pull

\[
PULL(\text{ft}) = 100 \cos \theta \\
\theta = \frac{1}{2}(180 - \Delta)
\]
Guying and Anchoring

- Guy Rule determines size of guy required based on lead, height, and pull measurements
- Assume 50 feet of pull for deadends
- Use smaller equivalent guys for larger guy sizes
 - Ex. For 26M guy size, use 1 10M guy and 1 16M guy
- Size of anchor is determined by guying requirements
Guying Tips

- Guys placed at corner angles of 60 degrees or less should be installed at the bisect of angle, unless double-deadend is required for other reasons.

- Two head guys (double-deadend) required at corners greater than 60 but less than 90 degrees.
Grounding

- Ground minimum 4 times per mile
- PM2/PM2A on one pole when crossing under any power lines
- If on telephone pole line and attach to one power pole, must ground to MGN
 - We typically ground poles on each side of the power pole as well
- At end of the line poles
NESC Code Terminology

- Communication Lines
 - Located in **Communications Space**
 - CATV
 - Traditional Copper Telephone Cables
 - Located in the **Supply Space**
 - “Qualified” work force required
 - Minimum approach distances
 - Dependent upon facility owner approval
NESC Pole Separations

- Table 235-5
- 40” vertical clearance supply equipment and communication equipment (up to 8.7 kV)
- If supply voltage is greater than 8.7 kV, clearance increases by 0.4” per kV over 8.7
- Less than 40” (e.g. 30”) may be acceptable for certain grounded supply facilities
Pole Separation

Fig. 238-6. Example of vertical clearance between supply and communication equipment on the same structure (Rule 238B).
The exception to Rule 238D permits the drip loop clearance to be 3" if the loop is covered by a suitable nonmetallic covering that extends 2" beyond the loop.

Rule 238C, NESC Table 238-2 requires not less than 4" between the effectively grounded luminaire and the communication equipment.

Fig. 238-15. Exception to vertical clearance between a drip loop feeding roadway lighting and communication equipment (Rules 238C and 238D).
Pole Separation

120/240V, 1Ø, 3W secondary (230C3)

VIOLATION!
A clearance of 40" is required. The 12" vertical clearance to a drip loop only applies to a drip loop entering a luminaire or traffic signal bracket. Luminaires and traffic signals serve their own safety function and therefore merit special code consideration.

Fig. 238-16. Example of a common joint use violation (Rule 238D).
Mid-Span Separation

Fig. 235-12. Example of vertical clearance between joint use (supply and communication) conductors (Rule 235C).
Mainline Power Violations
Separation to Power Conduit

Rule 239J

CLEARANCES 277

Vertical supply conductor passing through communication space.

Rule 239G requires the vertical supply conductor to have 40" of conduit above the highest communication attachment.

Rule 239G requires the vertical supply conductor to have 6" of conduit below the lowest communication attachment.

Rule 239D requires conduit within 8" of the ground.

Normally, conduit is used for the entire length.

Fig. 239-7. Example of vertical supply conductors on a joint use pole (Rule 239G).
Violation to Power Conduit
Vertical Ground Clearances

- Table 232-1
- Roads, streets, alleys, & other areas subject to traffic: 15.5 feet
- Railroads: 23.5 feet
- 230.A.2.a clarification on 9.5 feet

 “spaces and ways subject to pedestrians or restricted traffic only are those areas where riders on horseback or other large animals, vehicles, or other mobile units exceeding (8 ft.) in height are prohibited by regulation or permanent terrain configurations or are otherwise neither normally encountered nor reasonably anticipated or are otherwise limited.”

- Minimum clearance under fully loaded conditions.
Aerial Pole Line Review

ADSS Fiber

<table>
<thead>
<tr>
<th>Fiber</th>
<th>400’</th>
<th>350’</th>
<th>300’</th>
<th>250’</th>
<th>200’</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>16.4’</td>
<td>-</td>
<td>12.3’</td>
<td>-</td>
<td>8.2’</td>
</tr>
<tr>
<td>96</td>
<td>15.6’</td>
<td>-</td>
<td>11.1’</td>
<td>-</td>
<td>6.6’</td>
</tr>
<tr>
<td>288</td>
<td>13.6’</td>
<td>-</td>
<td>10.2’</td>
<td>-</td>
<td>6.6’</td>
</tr>
</tbody>
</table>

Projected Sag (In Feet)

NESC Heavy Loading @ 1% Installation Sag (Per AFL Manuf.)
Aerial Pole Line Review

Strand and Lash

<table>
<thead>
<tr>
<th>Fiber</th>
<th>Spans</th>
<th>400’</th>
<th>350’</th>
<th>300’</th>
<th>250’</th>
<th>200’</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>7.4’</td>
<td>6.0’</td>
<td>4.7’</td>
<td>3.5’</td>
<td>-</td>
<td>Sag 10</td>
</tr>
<tr>
<td>96</td>
<td>7.7’</td>
<td>6.3’</td>
<td>4.9’</td>
<td>3.6’</td>
<td>-</td>
<td>Projected Sag</td>
</tr>
<tr>
<td>288</td>
<td>8.4’</td>
<td>6.8’</td>
<td>5.4’</td>
<td>4.0’</td>
<td>-</td>
<td>(In Feet)</td>
</tr>
</tbody>
</table>

3/8”; Steel; High Strength; .5” Ice; @32 Deg
Aerial Service Drops

- NEC 840 - Premises Powered Broadband Communication Systems
- NEC 840.44 - Overhead Optical Fiber Cables
 - Where practicable, outside plant optical fiber cables shall be located below electric light or power conductors
 - Maintain 40” separation at pole
 - Maintain 12” separation in-span and at house
Aerial Service Drops

- NEC 840.44 (B) - Vertical clearance of not less than 8’ from all points of roofs above which cables pass
 - Exception 1: Does not apply to auxiliary buildings such as garages and the like
 - Exception 2: Reduction in clearance above only the overhanging portion of the roof to not less than 18” shall be permitted if (a) not more than 4’ of drop cable passes above roof overhang and (b) the cable is terminated at a through- or above-the-roof raceway or approved support
Aerial Service Drops

- NEC 230.28 - Service Masts as Supports
 - Only power service drop conductors shall be permitted to be attached to service mast
 - Communication conductors such as those for cable TV or telephone service are not permitted to be attached to the service mast
Service Drop Power Violation
Service Drop Power Violation
Service Drop Power Violation
Go or No Go
Go or No Go
Right-of-Way Considerations

- Easement Acquisition
 - Do the ownership research
 - Prepare the easement document
 - Sign and notarize
 - Have a checkbook in hand
 - Record at courthouse
 - IRS paperwork may be required
 - $600.00
Right-of-Way Considerations
Thank you

Questions?

- Contact Info:
 Larry Fausett
 l.fausett@fecinc.com
 417-682-5531 office
 417-262-0526 cell

Please hold till the end