5G is More Than Faster Mobile Broadband

...Much More

Wireless Cellular Data History

2G-Limited analog data support9.6 Kbps

3G support for data 384 Kbps

 Slow amp up and rollout of data services

 2008, first mobile device web browser released

Wireless Cellular Data History

- 4G networks dominated by video and image traffic
 - Initially real world speeds of 5 Mbps using LTE and 600 Mbps using LTE-A
 - Wireless became the preferred access method for the Internet
 - Social networking become the killer app
 - Video dominates Internet traffic

What is it?

- Spectrum for mobile cellular and fixed wireless
- Includes licensed and unlicensed spectrum
- Frequency ranges with the most space and therefore greatest bandwidth are above 28 GHz

Spectrum Allocated by FCC in July 14 Order

7 GHz of unlicensed spectrum in 64-71 GHz band

• 3.85 GHz of licensed spectrum in 28, 37 and 39 GHz bands

600 MHz of shared access spectrum in 37-37.6 GHz bands

Use of high frequencies allow for a large amount bandwidth but requires small cell radiuses

Future Actions under consideration by the FCC

- 150 MHz in the 3.5 GHz band
- Repurpose of the 2.5 GHz BRS/EBS band
- 650 MHz in the 3.7-4.2 GHz band
- 450 MHz in the 3.1-3.55 GHz band

Lower spectrum Band may be more suitable for Rural Deployments of 5G

5G Network Goals

 Designed to support real time applications requiring:

- Higher bandwidths
 - 10 Gigabit per second throughput per cell
- Low latency response times
 - 1 millisecond in comparison to today's 50-100 millisecond response times
- Support for 100's of billions of intelligent devices and sensors
- Use of high frequency RF bands to avoid congestion

5G Network Goals

- Opens up bandwidth that appears to be capable of serving 50+ Mbps to several thousand devices
- Gigabit service to many subscribers in an area
- Less than 1 ms latency
- Claims of providing a viable alternative to FTTP-5GTTP
- Available by 2020 and beyond

5G Network Goals

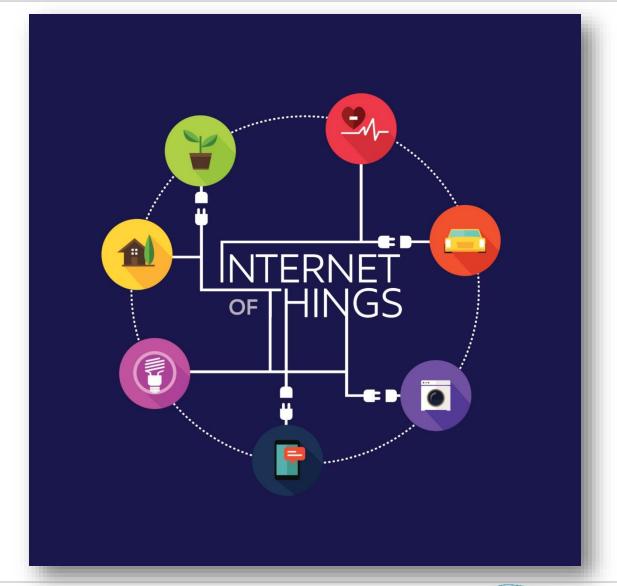
Initially targeted to fixed wireless applications and machine-to-machine communications, not personal devices

5G is going to look more like a super Wi-Fi than a traditional mobile cellular network.

5G How?

- Multiple Input, Multiple Output antenna system
 - Current MIMO supports 4x4 and 8x8 systems
 - o 5G supports 16, 64 and 128 way MIMO
- More RF spectrum
 - Using higher RF bandwidths
 - 28, 35, 40 and 61 GHz spectrums for 5G
 - Smaller cell serving area radius

5G How?


- Substantial blocks of unlicensed spectrum are included in the standards
- 5G may also take advantage of bi-directional simultaneous transmission and reception on the same frequency

5G Why?

- Smart cities
- Smart vehicles
- Smart homes
- Smart agriculture
- Last mile broadband

SMART COMMUNITIES

Better civic services and more engaged citizens

Smart Cities

- Public amenities and infrastructure connecting and harmonizing
- E-Health
 - Continuous patient monitoring
- IoT making remote actions seem local
 - Real time user centric network

Smart Homes

- Security
- Energy efficiency
- Home automation
- Machine-to-machine

SMART VEHICLES

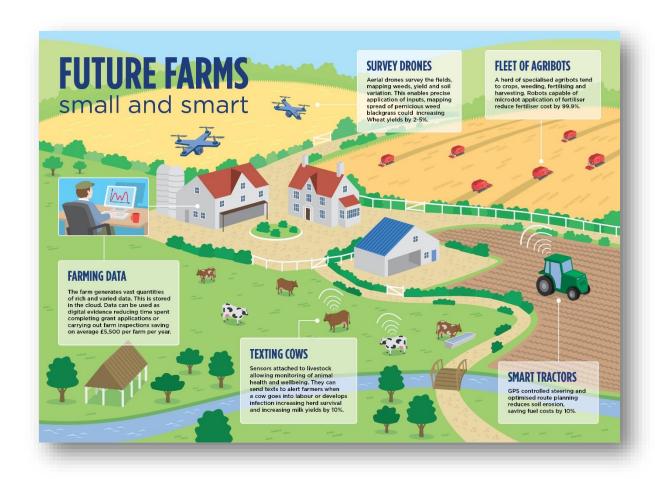
Reducing accidents, congestion, and eventually self-driving cars

Smart Vehicles

- Not just self-driving cars
 - Traffic management
 - Adjust Speed and Route to decrease overall travel time
 - Vehicle-to-vehicle
 - Rear end collision avoidance
 - Self-driving vehicles
 - Semis
 - Local delivery
 - Trucking
 - Autonomous robotics

IoT-Sensors Everywhere

- Autonomous vehicle-talk to each other directly car-tocar in addition to network
- Trucking
- Drones as sensors
- Last mile drop bypass for broadband services



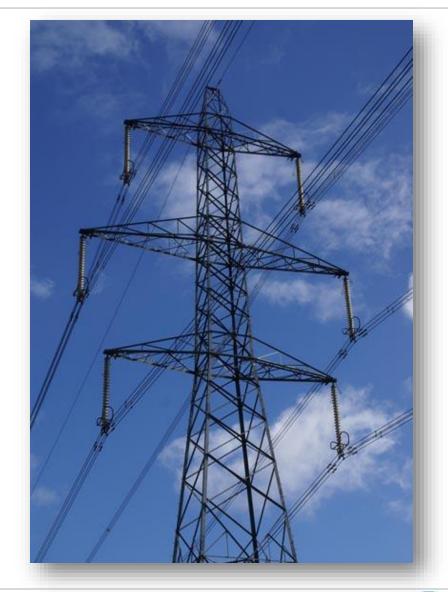
SMART FARMS

Better crop yields and healthier livestock means more profitability

Smart Agriculture

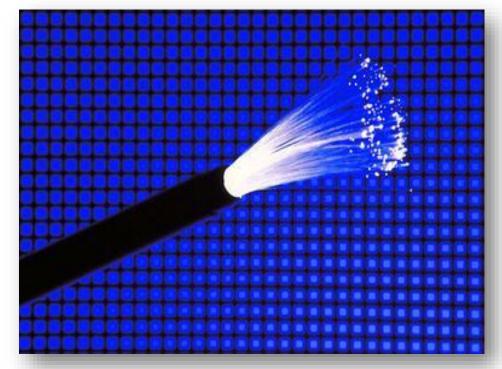
- IoT
 - Machine-to-machine communications
 - Sensors everywhere
- Fiber to the cow
- Weather monitoring
- Livestock and field monitoring

Last Mile Broadband


- Fiber to the wireless access
 Point/wireless to the home
 - 5G wireless to complete the last mile connection to the home (i.e. drop)
 - Eliminates the cost of the drop and house wiring
 - 30-50% of the FTTP implementation cost
 - May use wireless radios for back haul

Last Mile Broadband

- AT&T AirGig
 - Allows the use of existing power transmission lines to act as waveguides for 5G RF signals to provide broadband services to customers


5G Opportunities for Rural Carriers

Antenna sites

- The increase in number of antennas required to provide coverage will multiply
 - 100's of antennas required instead of 10's for 4G coverage

Fiber backhaul

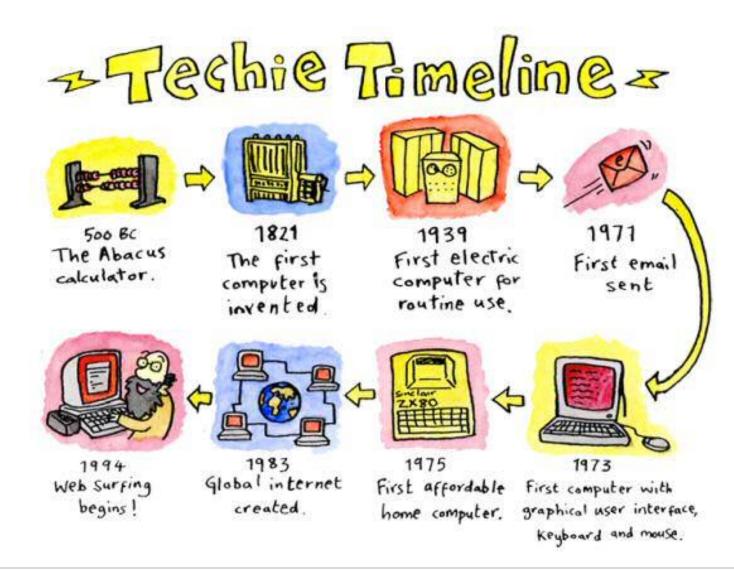
 Low latency requirements will limit the use of Ethernet based services but may increase the need for dark fiber or optical wavelength based services.

Two Sides to the 5G Coin for Rural Carriers

5G could make it easier for a WISP to come in and overbuild a small town and adjacent subdivisions.

On the other side, 5G will allow a small local provider to edge-out into holding company territory and pick up customers without the expense of going FTTH.

5G Opportunities for Rural Carriers


- Edge computing
 - Movement of computing requirements from a centralized location in the cloud to the network edge will require additional investment in small scale data centers at local locations
 - 1 millisecond response times limit max allowable distance of fiber cable to 150 miles or less

5G Roll-Out Timeline

- 2016: Standards work
- 2017: Experimental trials
- 2018: 4.5G Roll-out using existing 4G radios to support new 5G applications and technologies
- **2020:** Initial 5G rollout

Continue the Conversation:

Steven Senne, P.E.
Chief Technology Officer
Finley Engineering Company, Inc.
s.senne@FinleyUSA.com

